Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate.

نویسنده

  • Mark Z Jacobson
چکیده

This paper examines the incremental global climate response of black carbon (BC), the main component of soot, due to absorption and scattering by BC inclusions within cloud and precipitation particles. Modeled soot is emitted as an externally mixed aerosol particle. It evolves to an internal mixture through condensation, hydration, dissolution, dissociation, crystallization, aqueous chemistry, coagulation, and cloud processing. Size-resolved cloud liquid and ice particles grow by condensation onto size-resolved soot and other particles. Cloud particles grow to precipitation by coagulation and the Bergeron process. Cloud and precipitation particles also undergo freezing, melting, evaporation, sublimation, and coagulation with interstitial aerosol particles. Soot, which is tracked in cloud and precipitation particles of all sizes, is removed by rainout, washout, sedimentation, and dry deposition. Two methods of treating the optics of BC in size-resolved cloud liquid, ice and graupel are compared: the core-shell approximation (CSA) and the iterative dynamic effective medium approximation (DEMA). The 10-year global near-surface incremental temperature response due to fossil fuel (ff), biofuel (bf), and biomass burning (bb) BC within clouds with the DEMA was slightly stronger than that with the CSA, but both enhancements were <+0.05 K. The ff+bf portion may be approximately 60% of the total, suggesting that BC inclusions within clouds may enhance the near-surface temperature response of ff+bf soot due to all processes (estimated as approximately 0.27 K), by <10%, strengthening the possible climate impact of BC. BC cloud absorption was also found to increase water vapor, decrease precipitation, and decrease cloud fraction. The increase in water vapor at the expense of precipitation contributed to warming in addition to that of the cloud BC absorption itself. Aerosol-hydrometeor coagulation followed by hydrometeor evaporation may have caused almost twice the BC internal mixing as aerosol-aerosol coagulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health

[1] This study examines the short‐term (∼15 year) effects of controlling fossil‐fuel soot (FS) (black carbon (BC), primary organic matter (POM), and S(IV) (H2SO4(aq), HSO4 , and SO4 )), solid‐biofuel soot and gases (BSG) (BC, POM, S(IV), K, Na, Ca, Mg, NH4 , NO3 , Cl and several dozen gases, including CO2 and CH4), and methane on global and Arctic temperatures, cloudiness, precipitation, and at...

متن کامل

Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity

[1] The first three-dimensional global model in which time-dependent spectral albedos and emissivities over snow and sea ice are predicted with a radiative transfer solution, rather than prescribed, is applied to study the climate response of fossil fuel plus biofuel black carbon plus organic matter (ff+bf BC+OM) when BC absorption in snow and sea ice is accounted for. The model treats the cycl...

متن کامل

Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area

Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soo...

متن کامل

Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate c...

متن کامل

Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols

[1] This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 21  شماره 

صفحات  -

تاریخ انتشار 2006